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CLiCC project

0 U.S. EPA funded UCSB to develop a tool that can
rapidly estimate the environmental impacts of a
chemical life-cycle based on limited information
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Exposure Module
-

1 Why do we need exposure models

Environmental Human health

fate of chemicals impact

assessment




Exposure Models

Far-field exposure models
Traditionally employed in life cycle impact assessment (LCIA)
Inhalation, ingestion
Near-field exposure models
Indoor exposure
Personal care products
Inhalation, dermal absorption
Internal organ specific exposure model
Use of physiologically based toxicokinetic (PBTK) model

Concentration of chemicals in various organs after exposure



Exposure Models

Input to exposure models
Concentration of chemicals in different media
Various parameters of physico-chemical properties
Output from exposure models
Total amount intake (kg/kgyogyweigh)
Daily amount intake (kg/day, kg/kgyeqyweight/ 4AY)
Intake fraction (kg. . .../K9.mired)

Ready to assess health risk



Exposure Models
-

0 Far-field exposure models most suited for

Byproducts, pollutants, pesticides, etc.

No need to address indoor exposure /dermal exposure

Directly linked with CLiCC Fate & Transport module




Exposure Models
-

1 Near-field exposure models most suited for
VOCs that are released from products used indoors

Occupational setting

Directly applied to skins such as shampoo, lipsticks,
lotions, etc.

Linked with the CLICC Release module

FA -




Exposure Models
N
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Exposure Models

Internal organ specific models most suited for

Chemicals requires higher accuracy or dynamic of
exposure

Chemicals with richer physiological kinetic data

PBPK Model




Exposure Models




Toxicity

Chemicals can harm us in many different ways
Carcinogenicity
Developmental toxicity
Mutagenicity
Genotoxicity
Reproductive toxicity

Irritation and sensitization

“ﬂ‘ ‘




Toxicity

Some QSAR models can predict various
endpoints qualitatively (yes/no)

How can we assess toxicity quantitatively?

Paracelsus —6\?

All things are poisons, for there
is nothing without poisonous
qualities. It is only the dose

which makes a thing poison.

AZ QUOTES



Toxicity

The dose-response relationship
NOAEL (no observed adverse effect level)
LOAEL (lowest observed adverse effect level)

ED;, (effective dose for 50% of population)
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Toxicity

Effect factor, a metric to quantitatively describe
the toxicity of chemicals to human health. The
unit for EF, _is (cases/kg. . ..)

Based on the assumption of linear dose-
response relationship

EF, = 0.5/ED,
Estimating ED is key



Toxicity

Epidemiology studies (tier 1)
Most ideal, but rare

Direct use of the slope factor observed in these
studies



Toxicity

Chronic animal studies (tier 2)

For carcinogenic effects

TDSOa,t,ingeStion ) BW . LT . N
EDSOh,ingestion = AF - AF 106
a t
ED _ ECs0,tjpn ' INH -LT-N
50h,inh — AF, - AF, -10°
a

TD., and EC., based on animal tests, in mg/kg-day or
mg/m?3

BW, body weight (70 kg); LT, lifetime (70 years); N,
days per year (365.25 days/year); Af, (correction

factor for exposure duration, 2 for subchronic, 5 for
acute)



Toxicity

AF_, according to Vermeire et al., 2001

Type CF interspecies (-) Average bodyweight (kg)
human 1.0 70
pig 1.1 48
dog 1.5 15
monkey 1.9 5

cat 1.9 5
rabbit 2.4 2
mink 2.9 1
guinea pig 3.1 0.750
rat 4.1 0.250
hamster 4.9 0.125
gerbil 5.5 0.075

mouse 7.3 0.025



Toxicity

Chronic animal studies (tier 2)

For non-carcinogenic effects
NOEL-9-BW - LT -N

EDSO ingestion =

h,ingest AF, - AF. -10°

LOEL-2.25-BW -LT-N
EDSOh,ingestion = AF - AF -10°
a t
NOEC-9-INH -LT -N

EDsoh,inh - AF. - AF, .10°
. LOEC-2.25-INH -LT - N

50h,inh AF, - AF 10°



Chronic effects:
log(EDs, (log kg/lifetime)

Toxicity

Acute animal studies (tier 3)
More data available with LD, (dose lethal to 50%
population)
Regression model to extrapolate from acute to
chronic

TCDD EDj,= LD;/129
R2=0.32

EDj,=LD;/26
R2=0.45

Chronic effects
log, EDs, (log kg/lifetime)
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Acute effects: log;(LDs, (log mg/kg) Acute effects: log;(LDs, (log mg/kg)

Cancer effect Non-cancer effect



Exposure & Toxicity

Toxicity of the chemical alone doesn’t determine
the risk — nuclear waste sealed in lead barrels

Exposure to the chemical alone doesn’t
determine the risk — we drink water everyday

Risk = exposure * toxicity

Add in the consideration of released amount,
we can assess the impact

Impact = release (or emission) * risk



Predictive Life Cycle Impact Assessment
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Predictive Life Cycle Impact Assessment

User might unable to provide key inputs for other
modules in CLICC. Or they are confidential.

Alternative path to estimate mid-point characterized
results (GWP) and end-point characterized results
(human health) based on very simple inputs.

2]

No data received



Learning from Molecular Structure
=

7 How do we know the life-cycle impacts with simple
inputs?

1 Chemical structure is correlated with its properties and
impacts.

or ...than this
Might consume more
energy NH 2
Cl
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Higher global warming than this

impact



Learning from Molecular Structure

Chemical structure can be presented by molecular

descriptors. (MW, Num. Carbon...)

Build regression model to predict the characterized results.

X
X Y X

Vapor Pressure

Eco-Toxicity

Molecular Weight
Molecular Weight

A Nonlinear regression model: Artificial Neural Network (ANN).

More complicate than liner regression, better predictive power.



Artificial Neural Networks
-
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Model Development Procedure

— 166 reported characterized results collected
5 from Ecoinvent 3.01; Chemical Identifier
’\cO\ .
c;\:/ - (SMILEs) come from ChemSpider
S Databases Chemical Descriptors calculated by Dragon
Ej 6.0
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Model Performance -- CED
B
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Estimated Value
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Model Applicable Domain

Query chemicals that have higher structural similarity
with the training data are likely to have higher
prediction accuracy.

Accuracy could be measured depending on if this
chemical falls into the applicable domain.
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Model Applicable Domain




Conclusions & Future Outlooks

We developed a model to screening chemical life-
cycle impact using molecular structure information.

Three mid-points and three end-points impact
categories are available at this point.

Model applicable are characterized.

Increase the number of predictable impact
categories.

Collect more chemical LCl data as training dataset.



- Uncertainty Module

Yuwei Qin

yqin@bren.ucsb.edu



Uncertainty
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Uncertainty
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Uncertainties - How to treat them?

Collect data

Estimate a distribution or uncertainty range for each
input

Apply Monte Carlo method or similar tools to
simulate uncertainty

Alternative approach: analytical solutions



Uncertainty — Monte Carlo simulation

[ Probability distribution of input parameters }

!

[ Monte Carlo simulation }

!

Calculate the results

!

Repeat 1,000 times

!




Uncertainty — A conceptual model
-

Input parameter

LI

Input parameter | Model — Output

Input parameter /

E y =g(x)




Uncertainty- A model with uncertain
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Global Sensitivity Analysis

To understand the model structure and the input-
output relationships

To identify major contributors to output uncertainty
in the uncertain inputs space

We use a global approach, varying all inputs
simultaneously considering their full distribution



We perform them jointly

Uncertainty Analysis
Identification of Generation of a Generation of a
probability Monte Carlo Monte Carlo
distribution sample sample
function for the of the input of the output

uncertain inputs
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Joint uncertainty and sensitivity

analysis
-—
}

Global Sensitivity Analysis

Assessment of the
confidence of
results

Estimation of
measures

SAME MC SAMPLE!



Uncertainty — Applied to the Fate and

Transport model
-_
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Uncertainty — Applied to the Fate and

Transport model
-_

Air

Aerosols &

Natural

Agriculture

Freshwater
™

Biosolids

Coastal Marine
Soil Solids

Soil Air
Suspended sediment

Soil Water Sediment Water

Deep Soil Sediment Solids




Uncertainty — Model inputs

Meteorological Data (e.g. precipitation,
temperature)

Water (e.g. pH, salinity)
Soil (e.g. soil type, land use)
Chemical Characteristics (e.g. half-life from QSARs)



Uncertainty — Model output
—

Benzisothiazolone

O Concentration in freshwater
NH [kg/m?]
g 1,20E-09

CAS # 2634-33-5
8,00E-10

4,00E-10

0,00E+00



Uncertainty — Results for the

concentration in freshwater
—

Benzisothiazolone

O
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o+ 5 TN
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Histogram with Density Curve
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Uncertainty — Other ways to

communicate uncertaint
-*

Benzisothiazolone

O Concentration in freshwater
O\//(NH Deterministic [kg/m?] 1.20E-09
SI ape .
Probal:3)|I|st|c average 1.91E-09
CAS # 2634-33-5 [kg/m”]

Probabilistic median [kg/m?] 1.20E-09

Coefficient of variance 0.29
k-value

1.73
(Slob, 1994)
k-value

1.28
(Nunez et al., 2015)




Uncertainty — Other ways to

communicate uncertaint
-*

Benzisothiazolone
O Air Low uncertainty

Freshwater

NH
g Seawater Column
Seawater Sediment
Urban Soil
Urban Surface Soil
Natural Soil

Natural Surface Soil

Agricultural Soil
Agricultural Surface
Soil

CAS # 2634-33-5

High uncertainty




Global Sensitivity analysis

Benzisothiazolone

S

CAS # 2634-33-5

Importance Input

ranking

1 Degradation rate in water

2 Air/water partition coefficient

3 Depth freshwater

4 Natural soil area

5 Degradation rate in air (half-life)

101




Global Sensitivity analysis

Benzisothiazolone

@j‘{m
S

CAS # 2634-33-5

Importance Input
ranking
ﬁ Degradation rate in water \
2 Air/water partition coefficient
3 Depth freshwater
4 Natural soil area

Degradation rate in air (half—life-))

101

>95%




We provide users with a complete set
of information together with the results

1 About the input-output relationships

1 About the output distribution

-1 About the major contributors to the output
uncertainty

-1 Default uncertainty values can be updated by the
user if better information is available



Application of CLICC

User

Inp!
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Chemical
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Stoichiometry-

based LCI

Release
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Human Health

Effect
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Predictive LCIA

Ecotoxicity
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Industry Partners
—
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Stakeholder Engagement

Partner
Input

Module Development

v

Case Studies

Vv

User Interface Design

v

oAl

Full Tool Pilot Testing

Project Benefits

- design guided by user needs -
- validate with industry data -
- comparison to existing methods -

- establish credibility with users -




What is a case study?

A test case for the CLICC tool using inputs/data
from an industry partner

Can include all the tool’s modules or an isolated
combination of several modules

Can analyze one chemical, a group of chemicals, or
an entire product with the chemical formulation



Case Study Design

CLiCC goal
Validate models
Test feasibility & limitations

Understand user preferences

inputs and outputs

Industry Partner goal is defined when setting scope
and outlining case study



Case Study Example

Industry Partner Sherwin-Williams
Product Type Interior Paint (coating)
Release (1) To WWTP from brush washing
Assumptions (2) To interior air after application




Sherwin-Williams Case Study Scope

User
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Input /Output Module Flow

Sherwin-Williams

Inputs

chemical farmulation
& uze application

Predictive LCIA Module

| G impact categaries

mass per func

unique chemicals with

tional unit

QSAR Module

| chemical parameters |

| Uneozrtainty (highdlow)

Human Toxicity Endpaints l—b

Ecotoxicty Endpaints

Fate & Transport Module

| Environmental compartrment cencentrations

Exposure Module

Hurman Health Risk

(yes/no indictor)
Carcinogenity
Mutagenity

Skir Sersitizations
Developmental Toxcity

Ecotoxicty Risk

Chemicals’
cancentrationsin
environment that
exceed lethal dozes for
certain species

Human Health
Impact Module

Human Health Effect Factars

Hurman Exposure

Concentration that
hurmans are able to
inhale or ingest through
various pathways

Cuantitative descriptor of
the toxicity of chemicals to
human health, measured in
cases [cancer & non-cancer)
per mass intake




Upstream Impacts

Cumulative Energy Demand
Water Demand

Ecotoxicity

Acidification Impact

Ecoindicator 99, total
ODE (impact 2002+, LCIA)

Uncertainty is presented as a “low” (within 30% of
actual value) or “high” value



Upstream Impacts — Sample Results
_

Contribution of each chemical to the overall impact of the product

B Cumulative Energy Demand (MJ)

B Acidification Impact (moles of H+ eq)
B Ecotoxicity (point)
® Ecoindicator 99, total (point)

459, B ODE (impact 2002+, LCIA) (point)
0

B Water Demand (cubic meters)
40%
35%
30%
25%
20% r Ay
15% -
10%

5%

0%

* Y-axis labeled with chemical ingredients. Removed for SW confidentiality purposes.



Contribution to each impact category

. Ecoto)\ Acidification Impact
)

‘ B -

* Each color represents a different chemical. Labels removed for SW confidentiality purposes.




Downstream Impacts

Use Phase — Applying the Coating

Indoor Air Release

Release to WWT

Fate & Transport in 6 Different US Environments

Human Exposure Assessment

v

Ecotoxicity Evaluation

Human Health Impact Estimate




Fate & Transport Results
N

Average Chemical Concentration in the U.S (kg/m?)

Air

FW Column

FW Sediment

Average Concentration in the U.S (kg/m?) MAR Column

MAR Sediment

e
0 07 107 107 10 0%

Average Concentration in the U.S (kg/m?) of chemicals Urban Surface Soil
in environmental compartments. Value is calculated as

the average concentration of a chemical across six

locations - Los Angeles, CA; , San Francisco, CA; Salem, Total Urban Soil
OR; New York City, NY; Des Moines, IA.

FW: Freshwater; MAR: Marine water; URBAN: Urban AG Surface Soil
Soil; UNDEV: Undeveloped Soil; AG: Agricultural Soil

Total AG Soil

UNDEV Surface Soil

Total UNDEV Soil

*labels removed for SW confidentiality



Fate & Transport Results
N

Average Chemical Concentration in the U.S (kg/m?)

Air

Aerosol

FW Column

FW Suspended Sediment
Water in FW Sediment
FW Sediment Solids

MAR Column

Average Concentration in the U.S (kg/m?)
MAR Suspended Sediment

% o - B 5 3 MAR Suspended Sediment Solid
10% 109 107 107 10" 10" 10" ”
‘ater in MAR Suspended Sediment

Air in Urban soil

Water in Urban soil
Average Concentration in the U.S (kg/m?) of chemicals

in environmental compartments. Value is calculated as Urban soll solids

the average concentration of a chemical across six Deep Urban Soil
locations - Los Angeles, CA; San Francisco, CA; Salem,
OR; New York City, NY; Des Moines, IA. Air in UNDEV soil

Water in UNDEV soil
FW: Freshwater; MAR: Marine water; URBAN: Urban

Soil; UNDEV: Undeveloped Soil; AG: Agricultural Soil UNDEYV soil solids
Deep UNDEV Soil

Air in AG soil

Water in AG soil
AG soil solids
Deep AG Soil

*labels removed for SW confidentiality



Fate & Transport Results

xa

Daily concentration of Chemical “X” in New York City

10

106

|l'|

'\I ull d”

Concentration in the environment (kg/m?)

2005 2007 2009 2011 2013

B Freshwater Column I Mmarine Column



Fate & Transport Uncertainty Results
N

Uncertainty in the concentrations in San Francisco, CA

Low uncertainty High uncertainty
Bulk Air -

20% 50%

Bulk Freshwater Column -

Bulk Freshwater Sediment -

Bulk Seawater Column -

Bulk Seawater Sediment -

Bulk Total Urban Soil -

Bulk Urban Surface Soil -

Environmental Compartments

Bulk Total Natural Soil -

Bulk Natural Surface Soil -

Bulk Total Agricultural Soil -

Bulk Agricultural Surface Soil -

*labels removed for SW confidentiality



Ecotoxicity Results

oo | |1

10" year avg.
Median

D. magna LCsq
O. mykiss NOEC
experimental
predicted

Concentration (ug/L)

10° |

10* |
10% |

10 |

102 |
104t

10° |

10°® |

Freshwater Species Analysis

{1}
|

*labels removed for SW confidentiality




Human Health Impact Results

1.0E-04

1.0E-05

1.0E-06

1.0E-07

1.0E-08

1.0E-09

1.0E-10

1.0E-11

1.0E-12

1.0E-13

1.0E-14

Cancer Cases from Cumulative Exposure (excluding direct indoor air inhalation)

i

Miami Oregon

*chemical labels removed for SW confidentiality




Review of Results

(1) Detailed report provided

(2) Conference call (at least Thr) to go over the detailed results
and summarize:

* Largest upstream impacts

* Use & Release quantities/ratios

* Downstream impacts

Clarifying questions answered in this presentation, but substantial
questions are addressed in a follow up call after time for key

stakeholders to review the resulis.



What we’ve learned so far...

Case studies have guided our model improvements
and tool design, for example:
Prioritization method for QSAR model results

Necessity of supplemental reports describing data sources &
methods in more detail

Need for a more robust indoor air exposure model

Providing relevant context for results is critical in effective

communication



Other case study options

Analyze specific chemical components within a
product where data gaps exist

Compare current /traditional chemical formulations
to a proposed new formulation with novel
chemical(s)

Run a chemical (or group of chemicals) with existing
LCIA results through the CLICC models



We want your help!

Woant to participate in a case study?

Have an idea for a way to test the CLICC tool?

Please contact Jess (PhD student researchers at the
Bren School):


mailto:JessicaLeePerkins@gmail.com

Final remarks

Thank you for your attention and participation in
this webinar

This concludes the 2016 CLICC Webinar series

Any questions can be directed to presenters of this
webinar or

Recordings of the webinar available at
clicc.ucsb.edu


mailto:clicc@list.bren.ucsb.edu

