
CLICC WEBINAR 3

EXPOSURE & TOXICITY, PREDICTIVE LIFE 

CYCLE IMPACT ASSESSMENT, 

UNCERTAINTY, AND APPLICATION OF 

CLICC

10/7/2016

DINGSHENG LI, RUNSHENG SONG, 

YUWEI QIN, JESSICA PERKINS, STEFANO CUCURACHI



CLiCC Webinar series

 Webinar 1

 9/14/2016

 Life Cycle Inventory

 Webinar 2

 9/30/2016

 QSAR, Release, Fate & Transport

 Webinar 3

 10/7/2016

 Exposure & Toxicity, Predictive Life Cycle Impact Assessment, 
Uncertainty, application of CLiCC

 All webinars are recorded and available for viewing on 
clicc.ucsb.edu



CLiCC project

 U.S. EPA funded UCSB to develop a tool that can 

rapidly estimate the environmental impacts of a 

chemical life-cycle based on limited information



Exposure Module

 Why do we need exposure models

Environmental 

fate of chemicals

Human health 

impact 

assessment



Exposure Models

 Far-field exposure models

 Traditionally employed in life cycle impact assessment (LCIA)

 Inhalation, ingestion

 Near-field exposure models

 Indoor exposure

 Personal care products

 Inhalation, dermal absorption

 Internal organ specific exposure model

 Use of physiologically based toxicokinetic (PBTK) model

 Concentration of chemicals in various organs after exposure



Exposure Models

 Input to exposure models

 Concentration of chemicals in different media

 Various parameters of physico-chemical properties

 Output from exposure models

 Total amount intake (kg/kgbodyweight)

 Daily amount intake (kg/day, kg/kgbodyweight/day)

 Intake fraction (kgintake/kgemitted)

 Ready to assess health risk



Exposure Models

 Far-field exposure models most suited for

 Byproducts, pollutants, pesticides, etc.

 No need to address indoor exposure/dermal exposure

 Directly linked with CLiCC Fate & Transport module



Exposure Models

 Near-field exposure models most suited for

 VOCs that are released from products used indoors

 Occupational setting

 Directly applied to skins such as shampoo, lipsticks, 

lotions, etc.

 Linked with the CLiCC Release module



Exposure Models
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Exposure Models

 Internal organ specific models most suited for

 Chemicals requires higher accuracy or dynamic of 

exposure

 Chemicals with richer physiological kinetic data



Exposure Models
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Toxicity

 Chemicals can harm us in many different ways

 Carcinogenicity

 Developmental toxicity

 Mutagenicity

 Genotoxicity

 Reproductive toxicity

 Irritation and sensitization



Toxicity

 Some QSAR models can predict various 

endpoints qualitatively (yes/no)

 How can we assess toxicity quantitatively?



Toxicity

 The dose-response relationship

 NOAEL (no observed adverse effect level)

 LOAEL (lowest observed adverse effect level)

 ED50 (effective dose for 50% of population)



Toxicity

 Effect factor, a metric to quantitatively describe 

the toxicity of chemicals to human health. The 

unit for EFhum is (cases/kgintake)

 Based on the assumption of linear dose-

response relationship

 EFhum = 0.5/ED50

 Estimating ED50 is key



Toxicity

 Epidemiology studies (tier 1)

 Most ideal, but rare

 Direct use of the slope factor observed in these 

studies



Toxicity

 Chronic animal studies (tier 2)

 For carcinogenic effects

 TD50 and EC50 based on animal tests, in mg/kg-day or 
mg/m3

 BW, body weight (70 kg); LT, lifetime (70 years); N, 
days per year (365.25 days/year); Aft (correction 
factor for exposure duration, 2 for subchronic, 5 for 
acute)
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Toxicity

Type CF interspecies (-) Average bodyweight (kg)

human 1.0 70

pig 1.1 48

dog 1.5 15

monkey 1.9 5

cat 1.9 5

rabbit 2.4 2

mink 2.9 1

guinea pig 3.1 0.750

rat 4.1 0.250

hamster 4.9 0.125

gerbil 5.5 0.075

mouse 7.3 0.025

 AFa, according to Vermeire et al., 2001



Toxicity

 Chronic animal studies (tier 2)

 For non-carcinogenic effects
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Toxicity

 Acute animal studies (tier 3)

 More data available with LD50 (dose lethal to 50% 

population)

 Regression model to extrapolate from acute to 

chronic

Cancer effect Non-cancer effect



Exposure & Toxicity

 Toxicity of the chemical alone doesn’t determine 

the risk – nuclear waste sealed in lead barrels

 Exposure to the chemical alone doesn’t 

determine the risk – we drink water everyday

 Risk = exposure * toxicity

 Add in the consideration of released amount, 

we can assess the impact

 Impact = release (or emission) * risk



Predictive Life Cycle Impact Assessment

LCIA



 User might unable to provide key inputs for other 

modules in CLiCC. Or they are confidential.

 Alternative path to estimate mid-point characterized 

results (GWP) and end-point characterized results 

(human health) based on very simple inputs. 

Predictive Life Cycle Impact Assessment



Learning from Molecular Structure

 How do we know the life-cycle impacts with simple 
inputs?

 Chemical structure is correlated with its properties and 
impacts.

Might consume more 

energy

…than this 

Higher global warming 

impact
…than this 



Learning from Molecular Structure

 Chemical structure can be presented by molecular 

descriptors. (MW, Num. Carbon…)
 Build regression model to predict the characterized results.
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 A Nonlinear regression model: Artificial Neural Network (ANN).

 More complicate than liner regression, better predictive power.
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Artificial Neural Networks



Model Development Procedure

LCI 

Databases

Chemical 

Databases

SMILEs

DRAGON 

6

Chemical 

Descriptors
Characterized 

results

Test Data

Training 

Data

Trained ANN 

Model

Model 

Validation

Prediction 

Results

New Chemicals
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 166 reported characterized results collected 

from Ecoinvent 3.01; Chemical Identifier 

(SMILEs) come from ChemSpider

 Chemical Descriptors calculated by Dragon 

6.0

 Filter Feature Selection algorithm reduces 

descriptors from 4,000 to 30

 Cross-Validation to achieve the best ANN 

structures 

 Available impact categories are: CED, 

acidification, GWP, human health, ecotoxicity

and ecosystem quality.



Model Performance -- CED

Only testing 

chemicals

All chemicals



Model Performance – EI99

Only testing 

chemicals

All chemicals



Model Applicable Domain

 Query chemicals that have higher structural similarity 
with the training data are likely to have higher 
prediction accuracy.

 Accuracy could be measured depending on if this 
chemical falls into the applicable domain.

Euclidean distance 

space



Model Applicable Domain

Model
Selected Cut-off 

Threshold

MRE inside 

AD

MRE outside 

AD

Sample Size 

inside AD

Sample Size 

outside AD

CED 100 14% 26% 23 2

Eco-Indicator 60 23% 35% 4 21

Acidification 110 21% 46% 21 4

GWP 100 48% 89% 19 6

Human Health 90 40% 60% 16 8

Ecosystem Quality 60 49% 82% 7 17



Conclusions & Future Outlooks

 We developed a model to screening chemical life-

cycle impact using molecular structure information.

 Three mid-points and three end-points impact

categories are available at this point.

 Model applicable are characterized.

 Increase the number of predictable impact

categories.

 Collect more chemical LCI data as training dataset.



Uncertainty Module

Yuwei Qin
yqin@bren.ucsb.edu
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Uncertainties - How to treat them?

 Collect data

 Estimate a distribution or uncertainty range for each 

input

 Apply Monte Carlo method or similar tools to 

simulate uncertainty

 Alternative approach: analytical solutions



Uncertainty – Monte Carlo simulation

Probability Distribution of the output



Uncertainty – A conceptual model

Output



Uncertainty- A model with uncertain 

parameters



Global Sensitivity Analysis

 To understand the model structure and the input-

output relationships

 To identify major contributors to output uncertainty 

in the uncertain inputs space

 We use a global approach, varying all inputs 

simultaneously considering their full distribution



We perform them jointly



Joint uncertainty and sensitivity 

analysis 



Uncertainty – Applied to the Fate and 

Transport model
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Uncertainty – Applied to the Fate and 

Transport model



Uncertainty – Model inputs

 Meteorological Data (e.g. precipitation, 

temperature) 

 Water (e.g. pH, salinity) 

 Soil (e.g. soil type, land use) 

 Chemical Characteristics (e.g. half-life from QSARs) 



Uncertainty – Model output



Uncertainty – Results for the 

concentration in freshwater



Uncertainty – Other ways to 

communicate uncertainty 



Uncertainty – Other ways to 

communicate uncertainty 

Low uncertainty

High uncertainty



Global Sensitivity analysis 



Global Sensitivity analysis 

>95%



We provide users with a complete set 

of information together with the results

 About the input-output relationships

 About the output distribution

 About the major contributors to the output 

uncertainty

 Default uncertainty values can be updated by the 

user if better information is available



Application of CLiCC



Industry Partners



Stakeholder Engagement

Module Development

Case Studies

User Interface Design

Full Tool Pilot Testing

Partner 

Input

Project Benefits

- design guided by user needs -

- validate with industry data -

- comparison to existing methods -

- establish credibility with users -



What is a case study?

 A test case for the CLiCC tool using inputs/data 

from an industry partner

 Can include all the tool’s modules or an isolated 

combination of several modules

 Can analyze one chemical, a group of chemicals, or 

an entire product with the chemical formulation



Case Study Design

CLiCC goal 

 Validate models

 Test feasibility & limitations

 Understand user preferences

 inputs and outputs

Industry Partner goal is defined when setting scope 

and outlining case study



Case Study Example

Industry Partner Sherwin-Williams

Product Type Interior Paint (coating)

Release 

Assumptions

(1) To WWTP from brush washing

(2) To interior air after application
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Sherwin-Williams Case Study Scope



Input/Output Module Flow
60



Upstream Impacts

Cumulative Energy Demand 

Water Demand 

Ecotoxicity

Acidification Impact

Ecoindicator 99, total

ODE (impact 2002+, LCIA)

Uncertainty is presented as a “low” (within 30% of 
actual value) or “high” value



Upstream Impacts – Sample Results

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Contribution of each chemical to the overall impact of the product

Cumulative Energy Demand (MJ)

Acidification Impact (moles of H+ eq)

Ecotoxicity (point)

Ecoindicator 99, total (point)

ODE (impact 2002+, LCIA) (point)

Water Demand (cubic meters)

* Y-axis labeled with chemical ingredients.  Removed for SW confidentiality purposes.



Contribution to each impact category

Ecotoxicity
(point)

Acidification Impact
(moles of H+ eq)

* Each color represents a different chemical.  Labels removed for SW confidentiality purposes.



Downstream Impacts

Use Phase – Applying the Coating

Indoor Air Release

Fate & Transport in 6 Different US Environments

Human Exposure Assessment

Release to WWT

Human Health Impact Estimate

Ecotoxicity Evaluation



Fate & Transport Results

*labels removed for SW confidentiality



*labels removed for SW confidentiality

Fate & Transport Results
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Daily concentration of Chemical “X” in New York City

Fate & Transport Results



Fate & Transport Uncertainty Results

*labels removed for SW confidentiality



Ecotoxicity Results

Freshwater Species Analysis

*labels removed for SW confidentiality



Human Health Impact Results
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*chemical labels removed for SW confidentiality



Review of Results

(1) Detailed report provided 

(2) Conference call (at least 1hr) to go over the detailed results 

and summarize:

• Largest upstream impacts

• Use & Release quantities/ratios

• Downstream impacts

Clarifying questions answered in this presentation, but substantial 

questions are addressed in a follow up call after time for key 

stakeholders to review the results.



What we’ve learned so far…

Case studies have guided our model improvements 

and tool design, for example: 

 Prioritization method for QSAR model results

 Necessity of supplemental reports describing data sources & 

methods in more detail

 Need for a more robust indoor air exposure model

 Providing relevant context for results is critical in effective 

communication
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Other case study options

 Analyze specific chemical components within a 
product where data gaps exist

 Compare current/traditional chemical formulations 
to a proposed new formulation with novel 
chemical(s)

 Run a chemical (or group of chemicals) with existing 
LCIA results through the CLiCC models

73



We want your help!

 Want to participate in a case study? 

 Have an idea for a way to test the CLiCC tool?

 Please contact Jess (PhD student researchers at the 

Bren School):  JessicaLeePerkins@gmail.com

74
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Final remarks

 Thank you for your attention and participation in 

this webinar

 This concludes the 2016 CLiCC Webinar series

 Any questions can be directed to presenters of this 

webinar or clicc@list.bren.ucsb.edu

 Recordings of the webinar available at 

clicc.ucsb.edu

mailto:clicc@list.bren.ucsb.edu

